1. Web Appendix A

Proof. (Theorem 1) To prove Theorem 1 it has to be shown that for all \(c_j \in \mathbb{R}, j \in I_{k-1} \), and \(i \in I_{k-1} \) it holds

\[
\sup_{(\mu, \sigma) \in \Theta_i} P_{\mu, \sigma}(\bigcap_{j=1}^{i} \{ T_j(\mathbf{X}, S) \geq c_j \}) = P_{0,1}(\max_{r=i+1, \ldots, k} (\lambda_r + \lambda_i)^{-1/2}(X_r - X_i)/S \geq c_i).
\]

Let \(i \in I_{k-1} \) be fixed. Recalling that \(T_i(\mathbf{X}, S) = \max_{r=i+1, \ldots, k} (\lambda_r + \lambda_i)^{-1/2}(X_r - X_i - \epsilon)/S \), we get

\[
P_{\mu, \sigma}(\bigcap_{j=1}^{i} \{ T_j(\mathbf{X}, S) \geq c_j \})
= P_{0,1}(\bigcap_{j=1}^{i} \bigcup_{r=j+1}^{k} \{ X_r - X_j + (\mu_r - \mu_j - \epsilon)/\sigma \geq c_j S \sqrt{\lambda_r + \lambda_j} \}).
\] (1)

Let \((\mu, \sigma) \in \Theta_i = \{ (\mu, \sigma) \in \Theta : \mu_{(k)} = \max_{j=1, \ldots, k} \mu_j \leq \epsilon \} \). W.l.o.g. we can assume that \(\mu_{(k)} = \max_{j=1, \ldots, i-1} \mu_j = 0 \). For each \((\mu, \sigma) \in \Theta_i \) it then holds \(\mu_j < -\epsilon \), for all \(j = 1, \ldots, i-1 \) and \(\mu_i \in [-\epsilon, 0] \). The probability expression in (1) is obviously non-increasing in \(\mu_1 \) and approaches \(P_{0,1}(\bigcap_{j=2}^{i} \bigcup_{r=j+1}^{k} \{ X_r - X_j + (\mu_r - \mu_j - \epsilon)/\sigma \geq c_j S \sqrt{\lambda_r + \lambda_j} \}) \) if \(\mu_1 \) tends to \(-\infty \). Repeating this argument for all \(\mu_j \) with \(j < i \), we get the upper bound

\[
P_{0,1}(\bigcup_{r=i+1}^{k} \{ X_r - X_i + (\mu_r - \mu_i - \epsilon)/\sigma \geq c_i S \sqrt{\lambda_r + \lambda_i} \}).
\]
This bound is non-increasing in μ_i and non-decreasing in μ_r for all $r = i + 1, \ldots, k$, thus we get the final upper bound

$$P_{0,1}(\bigcup_{r=i+1}^{k} \{X_r - X_i \geq c_i S \sqrt{\lambda_r + \lambda_j}\}),$$

which is identical to right hand side of the equation given in Theorem 1. Let $a < -\epsilon$ be fixed and let $\mu^* = (a, \ldots, a, -\epsilon, 0, \ldots, 0)$ with $\mu_i = -\epsilon$. Noting that $\lim_{\sigma \to 0} P_{\mu^*, \sigma}(\bigcap_{j=1}^{i} \{T_j(X, S) \geq c_j\})$ is equal to the lower bound (2) and that $\{(\mu^*, \sigma) : \sigma \in (0, \infty)\} \subseteq \Theta_i$, the proof of Theorem 1 is complete.

\section{Web Appendix B}

\begin{proof}{(Lemma 1)}

In order to prove Lemma 1 we have to show that

$$\bigcap_{j=1}^{i} \{T_{i}(X, S) \geq c_j\} = \bigcap_{j=1}^{i} \{T'_{i}(X, S) \geq c_j\},$$

that is

$$\{\min_{j=1, \ldots, i} \max_{r \in I_k: r \neq j} (X_r - X_j - \epsilon - \sqrt{\lambda_r + \lambda_j} S) \geq 0\} = \{\min_{j=1, \ldots, i} \max_{r = j+1, \ldots, k} (X_r - X_j - \epsilon - \sqrt{\lambda_r + \lambda_j} S) \geq 0\}.$$

Let $\gamma_{r,j}(s) = \epsilon + \sqrt{\lambda_r + \lambda_j} s c_j$, $r \in I_k$, $j \in I_{k-1}$. Under the assumptions of Lemma 1 we get

$$\gamma_{r,p}(s) + \gamma_{p,q}(s) \geq \gamma_{r,q}(s) \text{ for all } s > 0, \ r \in I_k, \ p, q \in I_{k-1} \text{ with } p < \min(r, q).$$

Thus it is sufficient to prove that for each $x \in \mathbb{R}^k$ and $s > 0$

$$\min_{j=1, \ldots, i} \max_{r \in I_k: r \neq j} (x_r - x_j - \gamma_{r,j}(s)) \geq 0 \quad \quad \quad (4)$$

holds if and only if

$$\min_{j=1, \ldots, i} \max_{r = j+1, \ldots, k} (x_r - x_j - \gamma_{r,j}(s)) \geq 0. \quad \quad \quad (5)$$

Obviously (5) implies (4), thus it remains to prove that (4) implies (5). Let $m(j) = \max\{r \in I_{k-1}, r \neq j : x_r - x_j \geq \gamma_{r,j}(s)\}$, then (4) implies (5) if $m(j) > j$ for all $j = 1, \ldots, i$. 2
Clearly we have \(m(1) > 1 \). Now assume we have shown \(m(j) > j \) for all \(j = 1, \ldots, j' - 1 \), for some \(j' \leq i \).

Suppose \(m(j') < j' \). Then we have \(m(m(j')) > m(j') \), thus (4) implies \(x_{m(m(j'))} - x_{m(j')} \geq \gamma_{m(m(j'))},m(j')(s) \). Additionally we have \(x_{m(j')} - x_{j'} \geq \gamma_{m(j')},j'(s) \), thus \(x_{m(m(j'))} - x_{j'} \geq \gamma_{m(m(j'))},m(j')(s) + \gamma_{m(j')},j'(s) \). Inequality (3) yields \(x_{m(m(j'))} - x_{j'} \geq \gamma_{m(m(j'))},j'(s) \). But this is a contradiction to the maximality of \(m(j') \), thus \(m(j') \) can not be less than \(j' \) so that the definition of \(m(j') \) yields \(m(j') > j' \). By induction we finally get \(m(j) > j \), for all \(j = 1, \ldots, i \).

3. Web Appendix C

Proof. (Theorem 3) To prove Theorem 3 we have to show that

(a) \(\pi^*(\alpha, \epsilon, \delta, \lambda) \geq \inf_{(\mu, \sigma) \in \Theta} P_{\mu, \sigma}(\{i \in I_k : T_i(X, S) \geq c_i\} \supseteq B(\mu, \sigma)) = \min_{\ell \in I_k} \pi_\ell(\lambda) \),

(b) \(\pi^*(\alpha, \epsilon, \delta, \lambda) = \pi_k(\lambda) \) for all \(\lambda \) with \(\lambda_1 = \cdots = \lambda_k \),

where

\[
\pi^*(\alpha, \epsilon, \delta, \lambda) = \inf_{(\mu, \sigma) \in \Theta} \pi(\mu, \sigma | \alpha, \epsilon, \delta, \lambda),
\]

\[
\pi(\mu, \sigma | \alpha, \epsilon, \delta, \lambda) = P_{\mu, \sigma}(L_{1-\alpha}(X, S) \notin B(\mu, \sigma)),
\]

and

\[
\pi_\ell(\lambda) = P_{0,1}((\lambda_\ell + \lambda_i)^{-1/2}(X_\ell - X_i + \delta)/S \geq c_i \text{ for all } i \in I_k \setminus \{\ell\}).
\]

W.l.o.g. assume \(\max_{j=1,\ldots,k} \mu_j = 0 \). For each \(\ell \in I_k \setminus B(\mu, \sigma) \) we have

\[
\{L_{1-\alpha}(X, S) \notin B(\mu, \sigma)\} \supseteq \bigcap_{i \in B(\mu, \sigma)} \{T_i(X, S) \geq c_i\}
\]

\[
\supseteq \bigcap_{i \in B(\mu, \sigma)} \left\{\frac{X_\ell - X_i - \epsilon}{S\sqrt{\lambda_\ell + \lambda_i}} \geq c_i\right\}.
\]
As a consequence we get with \(M_\ell = \{ (\mu, \sigma) : \mu_\ell = 0 \} \) that

\[
\pi^*(\alpha, \epsilon, \delta, \lambda) \geq \min_{\ell \in I_k} \inf_{(\mu, \sigma) \in M_\ell} \min_{i \in B(\mu, \sigma)} \left\{ \frac{X_\ell - X_i - \epsilon}{S\sqrt{\lambda_\ell + \lambda_i}} \geq c_i \right\}.
\]

(6)

Straightforward monotonicity arguments yield that the right hand side of (6) is given by \(\min_{\ell \in I_k} \pi(\lambda) \), thus we get part (a) of Theorem 3. To prove part (b) let \(\lambda_1 = \cdots = \lambda_k \) and let \(\alpha < 1/2 \). Furthermore let \(\mu^* = \mu^*(\sigma) \) be the vector with \(\mu^*_k = 0 \) and \(\mu^*_j = -\epsilon - \delta \sigma \) for all \(j \in I_{k-1} \). Taking into account that \(B(\mu^*, \sigma) = I_{k-1} \) we obtain

\[
\pi(\mu^*, \sigma, |\alpha, \epsilon, \delta, \lambda) = P_{\mu^*, \sigma}(L_{1-\alpha}(X, S) = k) = P_{\mu^*, \sigma}(\bigcap_{i \in I_{k-1}} \{ \max_{r=i+1, \ldots, k} X_r \geq X_i + \epsilon + c_i S\sqrt{2\lambda_1} \}) = P_{\mu^*, \sigma}(\bigcap_{i \in I_{k-1}} \{ X_k \geq X_i + \epsilon + c_i S\sqrt{2\lambda_1} \}) = \pi_k(\lambda),
\]

where the third equation holds, because all \(c_i \)'s are positive if \(\alpha < 1/2 \). In the balanced case the \(\lambda_i \)'s are all equal, the distribution of \(X - \mu \) is permutation invariant and the critical values \(c_i \) are non-increasing in \(i \) (cf. Remark 1). Keeping this in mind, it is easy to prove that \(\min_{\ell \in I_{k-1}} \pi(\lambda) \geq \pi_k(\lambda) \), which finally yields part (b) of Theorem 3.